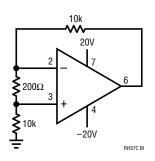


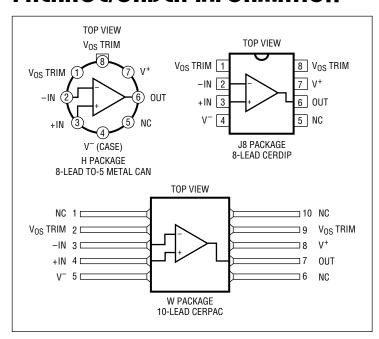
Precision Operational Amplifier

DESCRIPTION

The RH37C combines very low noise with excellent precision and high speed specifications. The low 1/f noise corner frequency of 2.7Hz combined with $3.5 \text{nV} \sqrt{\text{Hz}}$ 10 Hz noise and low offset voltage make the RH37C an excellent choice for low frequency military instrumentation applications. The wafer lots are processed to LTC's in-house Class S flow to yield circuits usable in stringent military applications.


For complete electrical specifications and performance curves see the OP-27/OP-37 data sheet.

ABSOLUTE MAXIMUM RATINGS


Supply Voltage	±22V
Internal Power Dissipation	500mW
Input Voltage	Equal to Supply Voltage
Output Short-Circuit Duration	Indefinite
Differential Input Current (Note	8) ±25mA
Operating Temperature Range	55°C to 125°C
Junction Temperature Range	55°C to 150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 1	0 sec) 300°C

17, LTC and LT are registered trademarks of Linear Technology Corporation.

BURN-IN CIRCUIT

PACKAGE/ORDER INFORMATION

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation) (Note 9)

SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	A = 25° TYP	C MAX	SUB- GROUP	-55°C MIN	C ≤ T _A ≤ TYP	125°C Max	SUB- Group	UNITS
V _{OS}	Input Offset Voltage		1			100	4			300	2, 3	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Offset Drift		4, 7							1.8		μV/°C
$\frac{\Delta V_{OS}}{\Delta Time}$	Long-Term Input Offset Voltage Stability		2, 4			2						μV/Month
I _{OS}	Input Offset Current					75	1			135	2, 3	nA
I _B	Input Bias Current					±80	1			±150	2, 3	nA

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation) (Note 9)

				TΔ	= 25°	С	SUB-	$-55^{\circ}C \le T_A \le 125^{\circ}C$			SUB-	
SYMBOL	PARAMETER	CONDITIONS	NOTES		TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS
en	Input Noise Voltage	0.1Hz to 10Hz	4, 5			0.25						μV _{P-P}
	Input Noise Voltage Density	$f_0 = 10$ Hz $f_0 = 30$ Hz $f_0 = 1000$ Hz	3 4 4			8.0 5.6 4.5						nV/√Hz nV/√Hz nV/√Hz
in	Input Noise Current Density	f ₀ = 1000Hz	4, 6			0.6						pV/√Hz
	Input Resistance Common Mode				2							GΩ
	Input Voltage Range		4	±11				±10.2				V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11V$ $V_{CM} = \pm 10V$		100			1	94			2, 3	dB dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$ $V_S = \pm 4.5V \text{ to } \pm 18V$		94			1	86			2, 3	dB dB
A _{VOL}	Large-Signal Voltage Gain	$\begin{aligned} R_L &\geq 2k, V_0 = \pm 10V \\ R_L &\geq 600\Omega, V_0 = \pm 1V \\ V_S &= \pm 4V \end{aligned}$	4	700 200			4	300			5, 6	V/mV V/mV
V _{OUT}	Maximum Output Voltage Swing	$R_L = 2k$ $R_L = 600\Omega$		±11.5 ±10.0			4 4	±10.5			5, 6	V V
SR	Slew Rate	$R_L = 2k, A_{VCL} \ge 5$		11			7					V/µs
GBW	Gain-Bandwidth Product	$f_0 = 10kHz (A_{VCL} \ge 5)$ $f_0 = 1MHz (A_{VCL} \ge 5)$	4	45	40							MHz MHz
Z_0	Open-Loop Output Resistance	$V_0 = 0, I_0 = 0$			470							Ω
P_{D}	Power Dissipation					170	1					mW

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) (Note 10)

SYMBOL	PARAMETER	CONDITIONS	NOTES	10KRAD(Si) Min Max	20KRAD(Si) Min Max	50KRAD(Si) Min Max	100KRAD(Si) Min Max	200KRAD(Si) Min Max	UNITS
V _{os}	Input Offset Voltage		1	100	130	180	280	400	μV
I _{OS}	Input Offset Current			75	75	90	120	180	nA
I _B	Input Bias Current			±80	±80	±125	±200	±400	nA
	Input Resistance Common Mode			2 (Typ)	2 (Typ)	2 (Typ)	2 (Typ)	2 (Typ)	GΩ
	Input Voltage Range		4	±11	±11	±11	±11	±11	V
CMRR	Common Mode Rejection Ratio	V _{CM} = ±11V		100	100	97	94	90	dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$		94	94	92	90	86	dB
A _{VOL}	Large-Signal Voltage Gain	$R_L \ge 2k, V_0 = \pm 10V$		700	700	700	700	400	V/mV
V _{OUT}	Maximum Output Voltage Swing	$\begin{array}{l} R_L \geq 10k \\ R_L \geq 600\Omega \end{array}$		±11.5 ±10.0	±11.5 ±10.0	±11.5 ±10.0	±11.5 ±10.0	±11.5 ±10.0	V
SR	Slew Rate	$R_L \ge 2k$		1.7	1.7	1.7	1.5	1	V/µs
$\overline{Z_0}$	Open-Loop Output Resistance	$V_0 = 0, I_0 = 0$		70 (Typ)	70 (Typ)	70 (Typ)	70 (Typ)	70 (Typ)	Ω
P_{D}	Power Dissipation			170	170	170	170	170	mW

TABLE 1A: ELECTRICAL CHARACTERISTICS

Note 1: Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after application of power.

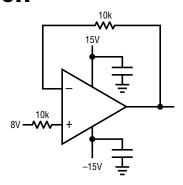
Note 2: Long-term input offset voltage stability refers to the average trend line of offset voltage vs time over the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 days are typically 2.5 μ V. Refer to the typical performance curves.

Note 3: Sample tested to an LTPD of 15 on every lot. Contact factory for 100% testing of 10Hz voltage density noise.

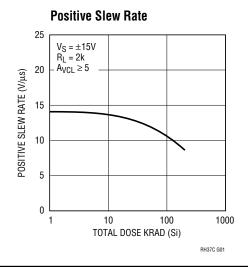
Note 4: Parameter is guaranteed by design, characterization, or correlation to other tested parameters.

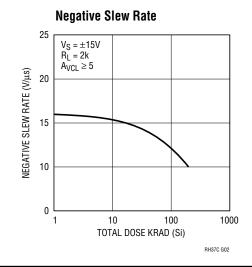
Note 5: See test circuit and frequency response curve for 0.1Hz to 10Hz tester on OP-27/OP-37 data sheet.

Note 6: See test circuit for current noise measurement on OP-27/OP-37 data sheet.

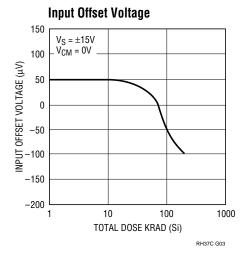

Note 7: The average input offset drift performance is within the specifications unnulled or when nulled with a pot having a range $8k\Omega$ to $20k\Omega$.

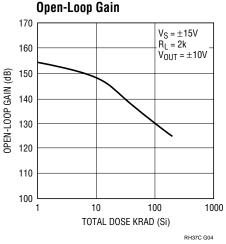
Note 8: The RH37C's inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds $\pm 0.7V$, the input current should be limited to 25mA.

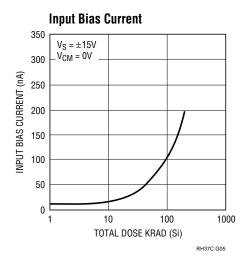

Note 9: $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted.

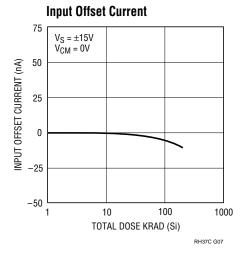

Note 10: $T_A = 25$ °C, $V_S = \pm 15$ V, $V_{CM} = 0$ V, unless otherwise noted.

TOTAL DOSE BIAS CIRCUIT


TYPICAL PERFORMANCE CHARACTERISTICS






TYPICAL PERFORMANCE CHARACTERISTICS

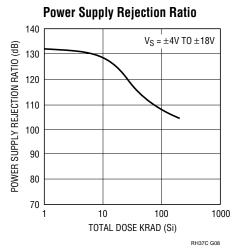


TABLE 2: ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*,2,3,4,5,6,7
Group A Test Requirements (Method 5005)	1,2,3,4,5,6,7
Group B and D for Class S, and Group C and D for Class B	1
End Point Electrical Parameters (Method 5005)	

^{*} PDA applies to subgroup 1. See PDA Test Notes.

PDA Test Notes

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.

I.D. No. 66-10-0172 Rev. B 0398

- 中文网站
- Quality
- Careers
- Contact Us
- MyLinear

- PRODUCTS
- SOLUTIONS
- DESIGN SUPPORT
- PURCHASE
- COMPANY

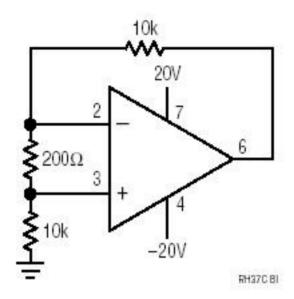
Space Qualified Products

<u>Home</u> > <u>Products</u> > <u>Space and Harsh Environment</u> > <u>Space Qualified Products</u>

> Radiation Hardened (Rad Hard) Op Amps and Comparators > RH37C

- Radiation Hardened (Rad Hard) Op Amps and Comparators
- Radiation Hardened (Rad Hard) Regulators
- Radiation Hardened (Rad Hard) Voltage References
- Military JAN S Products

RH37C - Precision Operational Amplifier


- DESCRIPTION
- PACKAGING
- ORDER INFO
- SIMULATE
- Priendly

Features

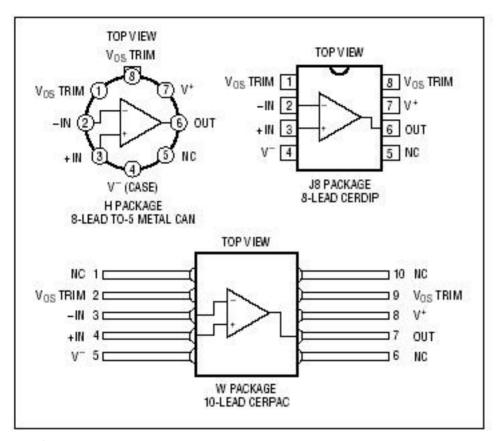
- ABSOLUTE MAXIMUM RATINGS
- Supply Voltage ±22V
- Internal Power Dissipation 500mW
- Input Voltage Equal to Supply Voltage
- Output Short-Circuit Duration Indefinite
- Differential Input Voltage (Note 8) ±25mA
- Operating Temperature Range –55°C to 125°C
- Junction Temperature Range –55°C to 150°C
- Storage Temperature Range –65°C to 150°C
- Lead Temperature (Soldering, 10 sec) 300°C

Typical Application

BURN-IN CIRCUIT

Back to Top

Description


The RH37C combines very low noise with excellent precision and high speed specifications. The low 1/f noise corner frequency of 2.7Hz combined with 3.5nVrtHz 10Hz noise and low offset voltage make the RH37C an excellent choice for low frequency military instrumentation applications. The wafer lots are processed to LTC's in-house Class S flow to yield circuits usable in stringent military applications.

For complete electrical specifications and performance curves see the OP-27/OP-37 data sheet.

Back to Top

Packaging

TO-5, DIP-8, FLATPAK-10 (Glass Sealed)

Back to Top

Order Info

- Part numbers ending in PBF are <u>lead free</u>. Please contact LTC marketing for information on lead based finish parts.
- Part numbers containing TR or TRM are shipped in <u>tape and reel or 500 unit</u> mini tape and reel, respectively
- Please refer to our <u>general ordering information</u> or the product datasheet for more details

Package Variations and Pricing

Part Number	Package	Pins	Temp	Price (1-99)	Price (1k)*	RoHS Data
OP37EN8	<u>PDIP</u>	8	C	\$5.00	\$4.05	View
OP37EN8#PBF	PDIP	8	C	\$5.00	\$4.05	View

OP37GN8	<u>PDIP</u>	8	C	\$3.40	\$2.75	View			
OP37GN8#PBF	PDIP	8	C	\$3.40	\$2.75	View			
OP37GS8	SO	8	C	\$3.50	\$2.85	View			
OP37GS8#PBF	SO	8	C	\$3.50	\$2.85	View			
OP37GS8#TR	<u>SO</u>	8	C		\$2.91	View			
OP37GS8#TRPBF	<u>SO</u>	8	C		\$2.91	View			
Buy Now									
Request Samples									

^{*} The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Linear Technology sales office or authorized distributor.

Back to Top

Applications

Back to Top

Simulate

To simulate selected Linear Technology products, please download <u>LTSpice / SwitcherCAD III</u>. This powerful schematic capture and simulation tool includes macro models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models.

For other simulation tools, visit our Design Simulation and Device Models page.

Back to Top

This product is not currently available for order online. Please contact your local sales office or distributor for availability.

Documentation

Datasheet

- RH37C Dice Data Sheet
- RH37C Precision Operational Amplifier

Spec Notice

• RH37C - SPEC NO. 05-08-5030

Reliability Data

- R301 RH Reliability Data
- Site Help
- Site Map
- Site Index
- Send Us Feedback
- •

© 2007 Linear Technology | Terms of Use | Privacy Policy